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Abstract

A measurement of the W boson helicity is presented, where the W boson originates
from the decay of a top quark produced in pp collisions. The event selection, op-
timized for reconstructing a single top quark in the final state, requires exactly one
isolated lepton (muon or electron) and exactly two jets, one of which is likely to
originate from the hadronization of a bottom quark. The analysis is performed us-
ing data recorded at a center-of-mass energy of 8 TeV with the CMS detector at the
CERN LHC in 2012. The data sample corresponds to an integrated luminosity of
19.7 fb−1 . The measured helicity fractions are FL = 0.298± 0.028 (stat)± 0.032 (syst),
F0 = 0.720± 0.039 (stat)± 0.037 (syst), and FR = −0.018± 0.019 (stat)± 0.011 (syst).
These results are used to set limits on the real part of the tWb anomalous couplings,
gL and gR.

Submitted to the Journal of High Energy Physics

c© 2014 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

∗See Appendix A for the list of collaboration members

ar
X

iv
:1

41
0.

11
54

v1
  [

he
p-

ex
] 

 5
 O

ct
 2

01
4

FERMILAB-PUB-14-446-CMS

http://creativecommons.org/licenses/by/3.0




1

1 Introduction
The top quark, discovered in 1995 [1, 2], is the heaviest particle in the standard model (SM) of
particle physics. At the CERN LHC [3], top quarks are produced in pairs through the strong
interaction and individually through electroweak processes including the tWb vertex. The
production of single top quarks has been observed both at the Tevatron [4, 5] and at the LHC [6,
7]. The t-channel process is the dominant electroweak single top quark production mechanism
at the LHC. The other two processes, W-associated (tW) and s-channel, amount to ≈20% of the
cross section.

Because of its high mass, the top quark decays before hadronization and its spin information is
accessible through its decay products. The top quark decays almost exclusively into a W boson
and a b quark, and thus provides an effective testing ground for studying the tWb vertex in a
search for new interactions.

The polarization of the W bosons from top quark decays is sensitive to non-SM tWb cou-
plings [8]. The W boson can be produced with left-handed, longitudinal, or right-handed
helicity; the relation Γ(t → Wb) = ΓL + Γ0 + ΓR holds for the corresponding partial widths
of the top quark decay. Hence, the W boson helicity fractions defined as Fi = Γi / Γ, where
i = L, 0, or R, fulfill the condition of ∑ Fi = 1. The SM predictions for the W boson helicity
fractions at next-to-next-to-leading-order (NNLO) in the strong coupling constant, including
the finite b quark mass and electroweak effects, are FL = 0.311 ± 0.005, F0 = 0.687 ± 0.005,
and FR = 0.0017± 0.0001 [9] for a bottom quark mass mb = 4.8 GeV and a top quark mass
mt = 172.8± 1.3 GeV. The current experimental results for the W boson helicity fractions [10–
13], all extracted using tt events, are in good agreement with the SM predictions.

We present for the first time a measurement of the W boson helicity fractions using events with
the t-channel single top quark topology, with a precision comparable to that of tt events [10–
13]. The single top quark topology here refers to a final state of exactly one lepton (` = e or µ)
and exactly two jets, one of which is associated to a b quark. While the event selection requires
a single top quark to be reconstructed in the final state, a significant contribution is expected
from tt events with one top quark decaying leptonically. The tt events carry the same physics
information on the tWb vertex in the top quark decay as single top quark events. The selected
tt event sample in this analysis do not overlap with the one obtained from the standard CMS tt
event selection. Inclusion of tt events in the signal sample provides a larger event sample and
results in smaller uncertainties in the measurement.

The helicity angle θ∗` is defined as the angle between the W boson momentum in the top quark
rest frame and the momentum of the down-type decay fermion in the rest frame of the W
boson. The probability distribution function of cos θ∗` contains contributions from all W boson
helicity fractions,

ρ(cos θ∗` ) ≡
1
Γ

dΓ
d cos θ∗`

=
3
8
(1− cos θ∗` )

2 FL +
3
4

sin2 θ∗` F0 +
3
8
(1 + cos θ∗` )

2 FR, (1)

which can be extracted from a fit of this distribution to the data. In this analysis, we use the
measured W boson helicity fractions to set exclusion limits on the tWb anomalous couplings
given by the following effective Lagrangian [8]

Lanom.
tWb = − g√

2
bγµ(VLPL + VRPR)tW−µ −

g√
2

b
iσµνqν

mW
(gLPL + gRPR)tW−µ + h.c., (2)

where q is the difference of the top and bottom quark 4-momenta. The operators PL and PR
are the left and right projectors, respectively. The left-handed and right-handed anomalous
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vector (VL, VR) and tensor (gL, gR) couplings are real, assuming CP conservation. Within the
SM, VL ≡ Vtb ≈ 1 and all other couplings vanish at tree level, while they are non-zero at higher
orders.

2 CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass/scintillator hadron calorimeter (HCAL). Muons are measured in gas-ionization detec-
tors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorime-
try complements the coverage provided by the barrel and endcap detectors.

Muons measured in the pseudorapidity range |η| < 2.4 of the muon system are matched to
tracks measured in the silicon tracker. This results in transverse momentum resolution for
muons with 20 < pT < 100 GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps [14].
The calorimetry systems, ECAL and HCAL, with |η| < 3.0 coverage are used to identify and
measure the energy of different particles including electrons and hadrons. The HCAL coverage
is further extended by the forward calorimeter, 3.0 < |η| < 5.0.

Electrons in the energy range of the presented measurement have an energy resolution of
<5% [15]. The HCAL, when combined with the ECAL, measures jets with a resolution ∆E/E ≈
100%/

√
E [GeV] ⊕ 5% [15]. The CMS detector is nearly hermetic, which permits good mea-

surements of the energy imbalance in the plane transverse to the beam line. A more detailed
description of the CMS detector, together with a definition of the coordinate system used and
the relevant kinematic variables, can be found in [16].

3 Data and simulated samples
This analysis is performed using the data from the LHC proton-proton collisions at 8 TeV
center-of-mass energy. The data sample, corresponding to an integrated luminosity of 19.7 fb−1

for both muon and electron triggers, was collected with the CMS detector in 2012.

Single top quark events produced via t-channel, s-channel, and W-associated processes are
generated using POWHEG 1.0 [17–21] with mt = 172.5 GeV interfaced with PYTHIA 6.4 [22] for
parton showering. Other samples including tt (mt = 172.5 GeV), single vector bosons asso-
ciated with jets (W/Z+jets), and dibosons (WW, WZ, ZZ) are generated by the MADGRAPH

5.148 [23] event generator interfaced with PYTHIA 6.4. The QCD multijet events are generated
using PYTHIA 6.4. The full CMS detector simulation based on GEANT4 [24] is implemented for
all Monte Carlo (MC) generated event samples.

4 Event selection and topology reconstruction
The final state of interest for this analysis contains a high-pT muon or electron from the decay
of the W boson coming from a top quark decay. In addition, a b quark jet from the top quark
decay, together with a light-flavored jet present in the t-channel single top quark production,
define the selected event signature. The b quark from the gluon splitting with a softer pT and
a broader η spectrum is not considered in the selection. The event selection for this analysis
follows closely that of the CMS single top quark cross section measurements [25].
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Events are filtered using a high-level trigger (HLT) requirement based on the presence of an
isolated muon (electron) with pT > 24 (27)GeV. The online muon candidate is required to
be within |η| < 2.1. For offline selection, events must contain at least one primary vertex,
considered as the vertex of the hard interaction. At least four tracks must be associated to the
selected primary vertex. The longitudinal and radial distances of the vertex from the center of
the detector must be smaller than 24 cm and 2 cm, respectively. For events with more than one
selected primary vertex, the one with the largest Σp2

T of the associated tracks is chosen for the
analysis. Events with high level of noise in the HCAL barrel or endcaps are rejected [26].

Extra selection criteria are applied to leptons and jets reconstructed using the CMS particle flow
algorithm [27, 28]. For events containing a muon, the selection requires exactly one isolated
muon originating from the selected primary vertex with |η| < 2.1 and pT > 26 GeV.

The isolation variable Irel is calculated by summing the transverse energy deposited by other
particles in a cone of size ∆R =

√
(∆η)2 + (∆φ)2 = 0.4 around the muon, divided by the muon

pT. The quantity is required to be less than 0.12 [25]. For events containing an electron, we look
for exactly one isolated electron with pT > 30 GeV and |η| < 2.5. The electron is selected if the
isolation variable, defined similarly to that of muons but with a cone size of 0.3, is less than
0.1. Events with additional leptons, passing less restrictive kinematic and qualification criteria,
are rejected. Details on the prompt muon and electron isolation and identification, as well as
the criteria to veto additional muons and electrons, can be found in [25]. The final event yields
for simulated events are corrected for efficiency differences between data and simulation in the
HLT and lepton selection [25].

Jets are reconstructed by clustering the charged and neutral particles using an anti-kT algo-
rithm [29] with a distance parameter of 0.5. The reconstructed jet energy is corrected for effects
from the detector response as a function of the jet pT and η. Furthermore, contamination from
additional interactions (pileup), underlying events, and electronic noise are subtracted [30]. To
achieve a better agreement between data and simulation, an extra η-dependent smearing is
performed on the jet energy of the simulated events [30]. Events are required to have exactly
two jets with |η| < 4.7 and pT > 40 GeV, where both jets must be separated from the selected
lepton (∆R > 0.3).

The neutrino in the decay of the W boson (W → `ν) escapes detection, introducing an imbal-
ance in the event transverse momentum. The missing transverse energy, ET/ , is defined as the
modulus of 6~pT, which is the negative vector pT sum of all reconstructed particles. The jet en-
ergy calibration therefore introduces corrections to the ET/ measurement. Events are accepted if
they have a significant transverse mass for the W boson candidate, mW

T > 50 GeV, where mW
T is

calculated as [25]
mW

T =
√
(p`T + ET/ )2 − (p`x + p/x)2 − (p`y + p/y)2. (3)

Finally, it is required that exactly one of the selected jets is identified as likely originating from
the hadronization of a b quark. The b-jet identification (b tagging) algorithm uses the three-
dimensional impact parameter of the third-highest-momentum track in the jet. The chosen
working point gives a misidentification rate of ∼0.3% for jets from the hadronization of light
quarks (u, d, s) or gluons and an efficiency of 46% for b jets [31]. The observed differences
between simulated and measured b tagging efficiencies for genuine and misidentified b jets are
corrected for by scaling the simulated events according to pT-dependent correction factors [31].

To reduce the contribution of jets coming from pileup, the non-b-tagged jet in the event is
required to pass the requirement that the root-mean-square of the ∆R between the momenta
of the jet constituents and the jet axis is less than 0.025. The simulated events include pileup
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interactions with the multiplicity matching that observed in data.

4.1 Reconstruction of the top quark

As indicated in the introduction, cos θ∗` is computed in the top quark rest frame. Therefore,
the top quark 4-momentum, which is the vector sum of the 4-momenta of its decay products,
needs to be known. In our selection, the decay products are a b jet, a charged lepton and a
neutrino, whose transverse momentum can be inferred from ET/ . The longitudinal momentum
of the neutrino, pz,ν, is determined from other kinematic constraints such as the W boson mass,
mW = 80.4 GeV [32].

Given ET/ =
√

p/2
x + p/2

y and energy-momentum conservation at the W`ν vertex, we obtain

pz,ν =
Λpz,`

p2
T,`
± 1

p2
T,`

√
Λ2 p2

z,` − p2
T,`(E2

`ET/ 2 −Λ2), (4)

where

Λ =
m2

W
2

+ ~pT,` · 6~pT. (5)

A negative discriminant in Eq. (4) leads to complex solutions for pz,ν. Events with such solu-
tions are found not to carry significant information on the W boson helicity and are discarded.
Otherwise, the solution with the smallest absolute value is chosen [4, 5].

The sample composition after the full event selection and top quark reconstruction is summa-
rized in Table 1; the total event yields for data and simulation are in good agreement within
statistical uncertainties for both muon and electron decay channels. The top quark reconstruc-
tion efficiency is about 76% in t-channel single top quark events.

About 70% of the selected tt events belong to the lepton+jets final state at generator level. The
reconstructed top quark is matched to the generated one in about 55% of cases in these events.
The reconstruction efficiency is slightly lower than that of the single top quark signal due to
possible b jet mis-assignments. The tt events with the µ(e)+τ decay mode, where the τ-lepton
decays hadronically, contribute about 16% of the selected events. The remaining 14% is mainly
attributed to the dileptonic final states with muons and electrons, where one of the leptons
has failed the veto criteria. The tt events in the current sample are rejected by the standard
lepton+jets tt selection because of the required number of jets and the b-jet multiplicity.

Figure 1 illustrates the reconstructed top quark mass, m`bν, in data and simulation. The de-
tector effects, together with the uncertainties in pz,ν solutions, result in the broadness of the
distribution as well as the change in the mean mass value. The distribution of reconstructed
cos θ∗` in data is compared with simulation in Fig. 1. The difference between the muon and elec-
tron decay channels is due to different lepton pT requirements and the different contributions
of the QCD multijet background. Lower cos θ∗` values are removed with a harder requirement
on the lepton pT. These distributions are used as input to the likelihood fit method to measure
the W boson helicity fractions.

5 Backgrounds
Figure 1 and Table 1 indicate that the production of the W boson in association with jets
(W+jets) is the most dominant background with a different shape in cos θ∗` than for the sig-
nal. We determine the normalization of the W+jets event sample together with the W boson
helicity fractions in the fit in order to reduce the related systematic uncertainties. The shape for
the W+jets background is taken from simulation.



5

Table 1: Event yields for data and simulation after the full event selection. Events with complex
pz,ν solutions are discarded. This rejects 40% of the single top quark events and about 50% of
events from the other processes. The expected number of simulated events is normalized to
the integrated luminosity of 19.7 fb−1 . Corrections from different sources [25] are considered
in simulation yields. The uncertainties are statistical only.

Process Muon channel Electron channel
Single top quark (t) 4459±28 3031±21

Single top quark (tW) 1504±35 1059±27
Single top quark (s) 265±2 182±1

tt 12017±42 8705±34
W+jets 10170±110 10800±110

Z/γ∗+jets 1451±34 1702±41
Dibosons 361±11 377±12

QCD 994±10 1698±23
Total expected 31209±130 27550±130

Data 31219 27607

The shape and the normalization of the QCD multijet background are obtained from an inde-
pendent measurement [25]. The shape is obtained from a QCD-enriched event sample, con-
structed by applying to data the selection mentioned in Section 4, but with the lepton isolation
requirement reversed, i.e. Irel > 0.12 and Irel > 0.1 for the muon and electron, respectively. The
normalization is extracted from a fit to the mW

T distribution in the signal region. The normaliza-
tions for other backgrounds, namely Z+jets and dibosons, are taken from the single top quark
cross section measurement [25] where their shapes are derived from simulation.

6 The fit method
The cos θ∗` distribution from a MC-reweighted simulation is fitted to the observed distribution
to extract the W boson helicity fractions. The left-handed and longitudinal polarizations are
treated as free parameters in the fit, while the right-handed polarization is obtained from the
constraint of ∑ Fi = 1. The top quark MC events are simulated using SM parameters, hereafter
referred to as ~FSM, and are reweighted according to,

w(cos θ∗`, gen;~F) =
ρ(cos θ∗`, gen|~F)

ρ(cos θ∗`, gen|~FSM)
, (6)

with ~F being an arbitrary choice for the W boson helicity fractions, to be determined in the
fit. The ~FSM values are approximated within POWHEG as FL = 0.30, F0 = 0.70 and FR = 0.
A transfer matrix, R(cos θ∗`, gen, cos θ∗`, rec), relates the generator-level variable, cos θ∗`, gen, to that
observed in the detector, cos θ∗`, rec. The probability density of a final state cos θ∗`, rec, for a given
~F, can be expressed, as

ρ(cos θ∗`, rec|~F) ∝ ∑
gen

w(cos θ∗`, gen;~F) ρ(cos θ∗`, gen|~FSM)R(cos θ∗`, gen, cos θ∗`, rec). (7)

We define a Poisson likelihood function,

L(~F) = ∏
i∈bins

(λMC;~F
i )ndata

i

ndata
i !

× e−λMC;~F
i , (8)
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Figure 1: The reconstructed top quark mass (upper left, upper right) and the reconstructed
cos θ∗` distributions (lower left, lower right) for data and simulation in the muon (left) and the
electron (right) decay channels. The normalization for simulated samples are corrected accord-
ing to the single top quark cross section measurement in which the shape for QCD multijet
events is obtained from data [25].

in which i runs over the bins of the measured cos θ∗`, recdistribution. For each bin, ndata
i is the

number of selected data events and λMC;~F
i is the expected number of simulated events. The

latter is a combination of the signal events reweighted according to a set of ~F components and
backgrounds,

λMC;~F
i = λ

bkg-other
i + βW jets × λ

W jets
i + f × λ

signal;~F
i , (9)

where the parameter f accounts for the normalization of the signal and is fixed to 1. This means
that the single top quark and tt normalizations are those measured in [25]. The W+jets content
after the full event selection is not well known and therefore its normalization, βW jets, is left as
a free parameter in the fit, which also absorbs the overall detector inefficiency. The shape of
the W+jets distribution, λW jets, is obtained from simulation. The yields for other backgrounds,
λ

bkg-other
i , are fixed to those measured in [25].

The signal sample includes the leptonic decay of t-channel, s-channel, and tW single top quark
production, as well as tt events in semileptonic and dileptonic final states. Although the kine-
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matical variables of final-state particles of the two top quarks in tt events are not strongly cor-
related at generator level, because of the relatively hard selection requirements, some corre-
lation is introduced between the reconstructed top quark variables and those from the non-
reconstructed tWb vertex. To avoid any bias from these correlations, the non-reconstructed
tWb vertex in tt events is also reweighted in the fit.

The ~F components, as well as βW jets, are treated as free parameters in the likelihood fit, Eq. (8).
Considering the constraint of ∑ Fi = 1, the likelihood is a 3-parameter function. The negative
log-likelihood function is minimized using MINUIT [33].

7 Systematic uncertainties
The following sources of systematic uncertainties are investigated for both muon and electron
decay channels of the W boson. The fit procedure is repeated varying the different systematic
sources and for each case the shift in the mean value compared to the nominal result is taken as
the systematic uncertainty. Where needed, limitations in the size of the systematic event sam-
ples are taken into account. A covariance matrix is constructed for the systematic uncertainties
in the fit parameters, FL and F0, to account for the related correlations. Such correlations affect
the systematic uncertainty in FR.

The total systematic uncertainties in FL and F0 are extracted from the diagonal components of
the covariance matrix. Table 2 summarizes the systematic uncertainties in the fit parameters.

7.1 Experimental uncertainties

Jet energy scale: Uncertainties in the jet energy scale are calculated and propagated to ET/
through simultaneous variation of all reconstructed jet 4-momenta in simulated events. The
variations are made according to the η- and pT-dependent uncertainties in the jet energy scale [30].
Jet energy resolution: The simulated jet energy resolution is smeared to better match to that
observed in data. The smearing correction is varied within its uncertainty [30].
Unclustered ET/ : An additional uncertainty arises from the effect of the unclustered calorimetric
energy on ET/ . This energy is computed by taking the vector difference between 6~pT and the neg-
ative vector sum of all leptons and jets momenta before applying the jet corrections described
in Section 4. The components of the resulting momenta are varied by±10% and thereby change
the vector sum of leptons and jets 4-momenta to obtain the new value for ET/ .
Pileup: The uncertainty in the level of pileup is estimated by varying total inelastic pp cross
section [34] by ±5%.
Lepton trigger and reconstruction: The data-to-simulation correction factors for the single-
lepton trigger and lepton selection efficiency are estimated using a “tag-and-probe” method [35]
in Drell–Yan (Z/γ∗ → ll) data and MC samples [25]. Uncertainties are assigned to the correc-
tion factors in order to cover possible differences between the single top quark enriched and
Drell–Yan data samples. The uncertainties also cover the pileup dependence of the scale fac-
tors.
b tagging and misidentification corrections: The b tagging and misidentification efficiencies
are estimated from control samples in data [31]. Scale factors are applied to the simulated
events to reproduce efficiencies in data and the corresponding uncertainties are propagated as
systematic uncertainties.
Uncertainty in the integrated luminosity: The normalization of the expected signal and back-
ground is varied by 2.6% to account for the uncertainty in the luminosity measurement [36].
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7.2 Modeling uncertainties

Single top quark production modeling: To account for the effects due to production modeling,
results are compared with those from an alternative generator (COMPHEP [37, 38]).
Scale: The renormalization and factorization scales (µR and µF) of the hard scattering in the
event are varied up and down by a factor of two from their nominal values, µ2

R = µ2
F = Q2, to

account for the scale uncertainties in the simulated single top quark and tt event samples.
Top quark mass: The single top quark and tt samples are simulated with mt = 178.5 GeV and
166.5 GeV to evaluate the uncertainty due to the top quark mass variations. The LHC-Tevatron
combination of the top quark mass uncertainty is 0.7 GeV [39]. The systematic uncertainty due
to mt is therefore obtained by interpolating the estimated uncertainty to mt = 172.5± 0.7 GeV.
Parton distribution function: The uncertainty due to the choice of the parton distribution
functions (PDF) is estimated by reweighting the simulated events with uncertainties in PDF
parameters, where each parameter corresponds to one of the PDF eigenvectors described by
CT10 [40]. The uncertainties in PDF parameters are evaluated using the LHAPDF [41] pack-
age. The analysis is redone for each set of the reweighted event samples and the results are
compared with those of the nominal analysis.
Shape uncertainty in W+jets control sample: The uncertainty arising from the heavy-flavor
content of the simulated W+jets event sample is taken into account by varying up and down the
W+ b and W+ q contributions by a factor of two. The W boson helicity fractions are estimated
using the altered W+jets template.

7.3 Normalization uncertainties

Normalization of tt: The tt cross section, σtt = 245.8± 10 pb [42], is varied within its theoretical
uncertainty, which is in agreement with the results of a method based on control samples in
data used to estimate the tt normalization in single top quark analyses [25].
Single top quark normalization: The single top quark production rates in t and tW channels [43]
are varied within their theoretical uncertainties.
QCD multijet: A 50% (100%) uncertainty for the muon (electron) decay channel is assumed
for the normalization of QCD multijet events, covering also the cos θ∗` shape dependence on
the lepton isolation requirement. The mW

T shape, used for the QCD background estimation, is
found to be more stable in the muon decay channel.
Electroweak backgrounds: The normalization of Z+jets and diboson processes are taken from
the measurement in [25], where an uncertainty of about 17% is estimated in the measured val-
ues.

7.4 Method-specific uncertainties

SM W helicities in the weight function: The tt events are generated with MADGRAPH, where
the SM predictions for W helicities differ by about 0.01 from those predicted by POWHEG. Given
the considerable tt contribution, the effect of applying the same weight function (Eq. (6)) to all
top quark processes is estimated by changing the SM helicity fractions in the weight function
to the MADGRAPH predictions for the tt component. The shift in the final results is considered
as a systematic uncertainty.
Fixing the signal normalization in the fit, f = 1: The effect of fixing the signal normaliza-
tion in the fit for the W boson helicity measurement (Section 6) is estimated by performing
pseudo-experiments, where the normalization of the top quark processes is varied by 10% in
pseudo-data and fixed in the fit. The observed effect is negligible, and is not included in the
uncertainties.
Limited size of simulated samples: The effect from limited size of simulated event samples
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is estimated using pseudo-experiments. The number of simulated events in each bin are var-
ied according to a Gaussian with the mean and width set equal to the bin posterior and its
uncertainty. The width of a Gaussian fit to the W boson helicity fractions obtained from the
pseudo-experiments is taken for this systematic uncertainty.
The tWb vertex in single top quark production: The anomalous couplings in the tWb pro-
duction vertex are not considered in the analysis, but their effects on the W boson helicity
measurements are estimated with a set of pseudo-experiments. Pseudo-data are randomly
produced from the simulated event samples with gL, VR and VL anomalous couplings imple-
mented in both production and decay [37, 38]. The values of the real anomalous couplings are
varied within the range obtained from [44]. The bias, estimated by fitting the pseudo-data with
anomalous couplings to the SM simulation, is included in the systematic uncertainties.

Table 2: Summary of the systematic uncertainties.

Muon channel Electron channel Combination
∆F0 ∆FL ∆F0 ∆FL ∆F0 ∆FL

Experimental 0.010 0.009 0.008 0.005 0.010 0.010
Modeling 0.025 0.017 0.025 0.022 0.025 0.020

Normalization 0.002 0.008 0.012 0.014 0.011 0.012
SM W helicities 0.007 0.004 0.005 0.003 0.007 0.004
MC sample size 0.026 0.012 0.025 0.015 0.020 0.012

tWb in prod. 0.014 0.016 0.010 0.018 0.011 0.014
Total 0.041 0.030 0.040 0.036 0.037 0.032

8 Results
The analysis yields the following results for W boson helicity fractions in the muon decay chan-
nel,

FL = 0.316± 0.033 (stat)± 0.030 (syst),
F0 = 0.715± 0.045 (stat)± 0.041 (syst),
FR = −0.031± 0.022 (stat)± 0.022 (syst),

and the electron decay channel,

FL = 0.272± 0.057 (stat)± 0.036 (syst),
F0 = 0.753± 0.087 (stat)± 0.040 (syst),
FR = −0.025± 0.042 (stat)± 0.025 (syst).

The smaller statistical uncertainty in the muon decay channel is the result of more events and
a relatively better correspondence between the generated and reconstructed cos θ∗` . The right-
handed helicity fraction in both channels is obtained using the ∑ Fi = 1 condition. The sta-
tistical correlation between FL and F0, about −0.90 in both channels, is taken into account in
calculating the statistical uncertainties in FR. The results from the two channels are compatible,
within the uncertainties, with each other as well as with the SM predictions .
We combine the measurements from both channels by constructing a combined likelihood from
the two likelihood functions,

Lcomb.(FL, F0, β
µ
W jet, βe

W jet) ≡ Lµ(FL, F0, β
µ
W jet)×Le(FL, F0, βe

W jet), (10)
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where the two terms on right-hand side have the W boson helicity fractions in common. The
combined likelihood is used to extract the W boson polarizations and the systematic uncertain-
ties in Table 2. All theoretical and experimental uncertainties are considered fully correlated
between the two channels, except for the lepton trigger and reconstruction efficiencies and for
the limited size of simulated signal event samples. The combination of the two measurements
leads to

FL = 0.298± 0.028 (stat)± 0.032 (syst),
F0 = 0.720± 0.039 (stat)± 0.037 (syst),
FR = −0.018± 0.019 (stat)± 0.011 (syst),

with a total correlation of −0.80 between FL and F0. The behavior of the combined FR value
being outside the interval of the FR in the muon and electron channels is a consequence of the
∑ Fi = 1 constraint together with the different contributions of the two channels in the combi-
nation. The smaller statistical uncertainty in FR is because of the negative (FL, F0) correlation.
Moreover, correlations between the systematic uncertainties in the two channels, which are
taken into account by construction in the combined fit, lead to smaller systematic uncertainty
in the combined FR.

Figure 2 illustrates the combined measured left-handed and longitudinal W boson helicity frac-
tions with their uncertainties, compared to the SM expectation in the (FL; F0) plane. The right-
handed polarization, FR, is compared with the SM prediction and previous results in Fig. 3.

0F
0.65 0.7 0.75 0.8

L
F

0.2

0.25

0.3

0.35

Data,
 stat. unc.σ 1 ±

Syst. unc.
Total unc.
SM pred.

CMS  (8 TeV)-119.7 fb

(PRD 81 (2010))

Figure 2: Combined results from the muon+jets and electron+jets events for the left-handed
and longitudinal W boson helicity fractions, compared with the SM predictions [9].

The combined W helicities, which are consistent with the SM expectations, are used as input
to the TOPFIT [8, 45] program to exclude the tensor terms of the tWb anomalous couplings,
gL and gR, while assuming VL = 1 and VR = 0. The best fit values for gL and gR couplings
are −0.017 and −0.008, respectively. Figure 4 shows the exclusion limits with 68% and 95%
confidence levels (CL).
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Figure 3: The right-handed helicity fraction of the W boson from the top quark decay. The
results from this analysis (top three entries) are compared with the SM prediction [9] and with
the previous measurements [10–13], which are based on tt events.
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Figure 4: Exclusion limits on the real part of gL and gR anomalous couplings, with VL = 1
and VR = 0, using the combined W boson helicity measurement in the single top quark event
topology. Within SM, gL and gR vanish at tree level while they are non-zero at higher order
calculations [8].

9 Summary
The W boson helicity fractions are measured in the single top quark event topology, where the
W boson from the top quark decays into a charged lepton (muon or electron) and a neutrino.
The selected data complement the data from the standard CMS tt event selection and have
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different systematic uncertainties. The results from the analysis of 19.7 fb−1 of pp collision data
at
√

s = 8 TeV are in agreement, within their uncertainties, with the standard model NNLO
predictions [9]. The measurements have similar precision to those based on tt events. The
combined results are used to set exclusion limits on the tWb anomalous couplings.
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RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
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